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Racemic nonactic acid was efficiently constructed in a convergent, stereocontrolled fashion (7 steps, 27%).
The present synthesis features a stereocontrolled 1,3-dione reduction with NaBH4/Et2B(OMe) and an
acid-promoted stereospecific cyclization in the formation of 7.
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Nonactin (1),1 a 32-membered macrocycle, conceptually con-
tains two molecules of (�)-nonactic acid and two molecules of
(+)-nonactic acid arranged in an alternating order with four ester
linkages, and represents the simplest member of a large group of
ionophore antibiotics available from a variety of Streptomyces cul-
tures.2 These macrotetrolides (or polynactins) exhibit pronounced
antibacterial,3 insecticidal,4 antitumoral,5 and immunosuppres-
sive6 bioactivities. Due to its impressive pharmacological profile
and novel and challenging structural characteristics, nonactin has
been an alluring target molecule for the synthetic community.7

Imaginably, extensive endeavors have been devoted to construct-
ing monomeric nonactic acid (in all forms: (+)-,7a,e,8 (�)-,2a,7a,e,8d,e

and (±-)9) and its derivatives.2a,7,8b,c,10 In asymmetric assembly of
nonactic acid, either one2a,7b,e,f,8c–e or two7a,c,8a,b chiral segments
could be accommodated into the final molecule. In contrast, the
synthesis of the racemic form has to start with a single stereogenic
center and must be fully stereocontrolled.11 Herein, we wish to
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report a concise and convergent synthesis of (±)-nonactic acid
((±)-2) that contains four stereogenic centers.

As delineated in Scheme 1, the current synthesis commenced
from (E)-methyl 3-methoxy-2-methyl-2-butenoate (3)12 which is
a known intermediate easily available from methyl acetylacetate
through methylation at C-2 (MeI, K2CO3, MeCOMe, reflux) and
from the subsequent enol ether formation (HC(OMe)3, H2SO4,
MeOH, reflux). Free radical reaction of 3 with NBS (100 mol %) in
the presence of a catalytic amount of Bz2O2 in refluxing CCl4
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afforded bromide 4 in 61% yield. Double deprotonation of 2,4-penta-
dione with LDA (200 mol %) at �78 �C followed by alkylation with
4 furnished the coupling product 5, which was present in solution
as a mixture of dione and ketoenol (in a ratio of ca. 1:4). Treatment
of 5 with NaBH4 and Et2B(OMe)13 stereoselectively formed syn-diol
6 in excellent yield (94%) via two successive reduction steps. The
second reduction proceeded in a highly stereocontrolled manner
because of the complexation effect of Et2B(OMe). Exposure of 6
to 5% HCl in methanol at room temperature effected the desired
cyclization to stereospecifically produce the thermodynamically
favored product 7,11,14 in which the (E) configuration of the
carbon–carbon double bond allows maximum conjugation. The
generation of 7 presumably involved hydrolysis, hemi-acetal
formation, and dehydration. By three known transformations
described previously (i.e., stereoselective hydrogenation,7e

Mitsunobu benzoylation,8a and saponification of both ester group-
s8a), 7 was smoothly converted to (±)-2 in 75% overall yield. The
structure of (±)-2 was confirmed by spectroscopic analysis.8a,15

In summary, racemic nonactic acid was efficiently constructed
in a convergent, stereocontrolled fashion (7 steps, 27%). The pres-
ent synthesis features a stereocontrolled 1,3-dione reduction with
NaBH4/Et2B(OMe) and an acid-promoted stereospecific cyclization
in the formation of 7.
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